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The effective action provides an appropriate cost function to determine most
probable (or optimal) histories for nonlinear dynamics with strong noise. In
such strong-coupling problems, a nonperturbative technique is required to
calculate the effective action. We have proposed a Rayleigh�Ritz variational
approximation, which employs simple moment-closures or intuitive guesses of
the statistics to calculate the effective action. We consider here an application to
climate dynamics, within a simple ``bimodal'' Langevin model similar to that
proposed by C. Nicolis and G. Nicolis [Tellus 33:225 (1981)]. Capturing
climate state transitions even in this simple model is known to present a serious
problem for standard methods of data assimilation. In contrast, it is shown that
the effective action for the climate history is already well-approximated by a
one-moment closure and that the optimal, minimizing history robustly tracks
climate change, even with large observation errors. Furthermore, the Hessian of
the effective action provides the ensemble variance as a realistic measure of
confidence level in the predicted optimal history.

KEY WORDS: Optimal; estimation; Onsager�Machlup; effective action.

1. THE PROBLEM AND THE MODEL

It is a truism of statistical mechanics that most-probable states are obtained
as the extremizers of suitable thermodynamic functions. For example,
according to the Boltzmann principle, the most probable state of a system
in thermodynamic equilibrium is that which maximizes the entropy.
Onsager showed that there are similar variational principles as well to
determine most-probable histories, or time-sequences of states.(1) Thus, in
thermodynamic equilibrium, the most probable sequence of fluctuations is
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the one that minimizes the Onsager�Machlup action, which represents a
time-integrated dissipation or entropy-production. (2) However, such varia-
tional principles are generally only well-developed and understood for
problems with weak noise and thus small probability of large fluctuation
events. This is the regime studied in the classic Kramers transition-rate
theory of chemical kinetics, where steepest-descent methods may be applied
in the limit of vanishing noise. For reviews of the weak-noise theory, see
refs. 3�5.

There are many problems, however, where large fluctuations regularly
occur and weak noise asymptotics is not relevant. Consider as an example
the following nonlinear Langevin model

X4 (t)= f (X(t))+}'(t) (1.1)

where '(t) is white-noise, ('(t) '(t$))=$(t&t$), and f (x)=&U$(x),
where U(x) is the double-well potential

U(x)=&2x2+x4 (1.2)

with minima at x=\1. Similar models were proposed by Nicolis and
Nicolis(6) as simple climate models exhibiting bimodality (see also refs. 7�10).
In their model X(t) represented the average surface temperature of the earth
at time t. The function U(x), which was called in ref. 6 the ``climate potential,''
gives the steady-state probability distribution Ps(x) B exp(&2U(x)�}2) of
the event X(t)=x at sufficiently large times t. In the limit } � 0, its minima
represent the overwhelmingly most probable states of the climate. Thus, the
minimum at x=+1 can be thought of as the present climate state, while
x=&1 represents ice ages, for example. When } is small, the dynamics
consists of small fluctuations about the minima in one of the wells with
long residence times and, then, very rarely, large fluctuations leading to
transitions into the other well. However, on geological time scales transi-
tions occur frequently, and thus the small } limit is not realistic and of little
relevance to long-time climate dynamics. In their study of the above model,
Miller et al.(11) employed the value }r0.5, which is neither very small nor
very large. Those authors checked that with this value of the noise strength
the Kramers formula gives rather poor estimates of the mean times between
transitions.

Nevertheless, there is great practical interest in calculating most prob-
able histories for such strongly nonlinear systems with large fluctuations.
One example is the problem of data assimilation, in which the state history
of an atmospheric or oceanographic model is estimated, based upon a set
of observations with some random errors. Data assimilation is currently
used in initializing weather forecast models in modern meteorology and it
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is increasingly important in physical oceanography and paleoclimatology.
See refs. 12 and 13 for reviews. One method that is now frequently
employed is the extended Kalman filter (EKF). This method, which makes
a linear interpolation of current observations and model forecasts weighted
according to their estimated reliability, is a generalization to nonlinear
dynamics (see ref. 14) of the original Kalman filter. The latter is proved to
be the optimal estimator for linear dynamics with additive Gaussian noise.
Its extension to nonlinear dynamics has only been proven rigorously to be
correct in the weak-noise limit.(15) Another popular approach, which we
will call the least-squares variational (LSV) method, is based upon minimiz-
ing a least-squares cost functional of time-histories X(t) of the state
variable x. For example, in the model (1.1) above, the (dynamical part of
the) cost function would be

I[X ]=
1

2}2 |
tf

ti

[X4 (t)& f (X(t))]2 dt (1.3)

In the weak-noise limit, this is the Onsager�Machlup action functional.
Thus, minimizing this functional in the weak-noise limit is proved to select
the statistically most probable history, conditioned on available informa-
tion. If observations rm of the state x of the system are taken at times tm ,
assumed to be imperfect with Gaussian observation errors of variance Rm ,
for m=1,..., M, then the additional information may be incorporated into
another term to the cost function, yielding

I
*

[X ]=
1

2}2 |
tf

ti

[X4 (t)& f (X(t))]2 dt+ :
M

m=1

1
2Rm

[X(tm)&rm]2 (1.4)

as the final functional to be minimized.
However, as emphasized in ref. 11, both of these standard methods

��EKF and LSV��are known to fail frequently when applied to strongly
nonlinear dynamics. There may be different causes and manifestations of
the failure. Deterministic chaos and exponential instability of trajectories
pose one set of difficulties. Another problem has to do with ``multi-
modality,'' in which the statistics of the system exhibit multiple regimes,
with occasional transitions between them occurring either randomly or
quasi-periodically. In a simple context, the phenomenon is found in the
model (1.1), which shows a bimodality between two climate states, ``nor-
mal'' and ``ice age.'' As discussed in detail in ref. 11 the standard methods
such as EKF and LSV fail to track transitions between regimes, unless the
observational sampling rate is high or the observations are assumed to be
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extremely accurate. For example, in the model (1.1) above, climate transi-
tions were found in the estimated history when observed in the data at
times separated by unity and with observation error variance R=0.01,
i.e., errors 100 of the mean. However, with observation error variances
estimated as R=0.04, or errors 200 of the mean, both EKF and LSV
estimators failed to show a transition using the same data at unit intervals
exhibiting a clear transition. Associated with this failure was an unrealistic
confidence level in the faulty estimate. With data showing the variable
X(tm) in the opposite well as the estimator, the EKF and LSV methods
gave as their estimated error variances only r0.016, or estimated error
12.50 of the mean. The overconfidence in reliability of these estimators
and their sensitivity to the precise size of the observation error and the
frequency of observations is an important limitation in their practical
application. Uncertainties inherent in meteorological and oceanographic
observations are often hard to assess accurately. Additionally, the data may
be sparse or poorly distributed. Yet we see that with even a change from
100 to 200 estimated error in the observations, the standard assimilation
methods may either indicate or not indicate the presence of a transition in
the past climate.

In our judgement, these failures are due to the use of estimation
methods without any statistical justification for strongly nonlinear, noisy
systems. Recently, one of us has advocated the use of the so-called effective
action as the proper cost function for optimal estimation of nonlinear
dynamics.(16) This functional is a central object in the ensemble theory of
fluctuations for empirical N-sample averages. It thus has a statistical
justification for use in data assimilation of chaotic or stochastic nonlinear
dynamics. This paper is a preliminary report on work of Eyink and
Restrepo(17) validating the method on the two models advanced in ref. 11
as crucial tests of proposed assimilation schemes. One of these test models
is the chaotic 3-mode dynamical system of Lorenz.(18) The other is the
bimodal climate model of Nicolis and Nicolis, (6) in the precise form of
equation (1.1). Here we shall present some of the essential results for the
model (1.1), deferring full details of this work end treatment of the Lorenz
model to the forthcoming paper.(17)

2. THE EFFECTIVE ACTION AND RAYLEIGH�RITZ METHOD

We must first give a quick summary of the effective action, its basic
definition, properties, and calculational schemes. Because these subjects
have been discussed in detail in earlier publications, (21�24) here we shall be
brief. What we call the effective action is the Crame� r large-deviation rate
function(25) (see also ref. 26, Section 8.6.4) for empirical N-sample averages
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of time-series. Thus, in the context of the model (1.1), the effective action
1[X ] is a functional of histories [X(t): t # [ti , tf ]] of the model which
determines their ``cost'' to occur as spontaneous fluctuations of the N-sample
average:

X� N(t) :=
1
N

:
N

n=1

Xn(t) (2.1)

Here, Xn(t), n=1,..., N are N independent sample outcomes of the system
(1.1). More precisely, the probability for the event [X� N(t)rX(t):
t # [ti , tf ]] to occur in the limit as N � � is exponentially small, given as

P(X� N(t)rX(t): t # [ti , tf ])texp(&N } 1[X ]) (2.2)

The functional 1[X ] is a nonnegative, convex functional of the histories
X(t). The most important property for our purposes is that its minimizer
X

*
(t) subject to a set of constraints R is the most probable value of the

N-sample average in the subensemble ( } )
*

conditioned upon the event
that R occur. For example, the absolute minimizer X� (t) with minimum
1[X� ]=0 is the unconditional ensemble average X� (t) :=(X(t)) . It is
generally accepted that the optimal solution of the estimation problem for
nonlinear dynamics is provided by such conditional statistics, e.g., see refs.
19 and 20. Thus, the effective action has a statistical basis to be used as a
cost function for estimation of the state history X(t). Furthermore, the
effective action is a generating functional for (irreducible) multitime
correlations of X. In particular, the two-time correlation C

*
(t, t$) :=

(X(t) X(t$))
*

, &(X(t))
*

(X(t$))
*

is given by the inverse Hessian of the
effective action:

C
*

(t, t$)=\ $21
$X(t) $X(t$)

[X
*

]+
&1

(2.3)

The diagonal C
*

(t, t) gives the ensemble variance Var
*

(t) :=
([X(t)&X

*
(t)]2)

*
.

There is no closed form expression for 1[X ] in general. However,
there are various schemes by which it may be calculated. It was shown in
ref. 21 that there is a variational characterization which is a useful basis for
calculation. Let L be the Liouville or Fokker�Planck operator appearing
in the (forward) evolution equation �t P(x, t)=LP(x, t) for the probability
density P(x, t) of the event X(t)=x. For example, in the model (1.1),

�t P(x, t)=LP(x, t) :=&
�

�x
[ f (x) P(x, t)]+

1
2

}2 �2

�x2 P(x, t) (2.4)
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Then, it is shown in ref. 21 that 1[X ] is obtained by a constrained variation

1[X ]=st.pt.A, P # CX |
tf

ti

dt | dx A(x, t) } (�t&L) P(x, t) (2.5)

Here the variation is over both normalizable probability distributions
P(t) # L1 and over bounded observables A(t) # L�. This variation is subject
to the set of constraints CX : unit normalization � A(x, t) P(x, t) dx=1 and
fixed expectation � x } A(x, t) P(x, t) dx=X(t) both for t # [ti , tf ]. Here,
X(t) is the particular history at which the value of 1 [X ] is desired. This
variational problem may be solved by the use of Lagrange multipliers h(t)
to implement the second constraint. As in ref. 24, this leads to a pair of
Euler�Lagrange equations, the forward equation solved with initial data
P(ti )=P0 :

�t P(x, t)=LP(x, t)+h(t)[x&(x) t] P(x, t) (2.6)

and the backward equation for the adjoint operator L* solved with final
data A(tf )#1:

�t A(x, t)+L*A(x, t)+h(t)[x&(x) t] A(x, t)=0 (2.7)

Here (x) t :=� xP(x, t) dx and h(t) appears as a ``control field'' used to
steer the system of equations so that constraint � x } A(x, t) P(x, t) dx=
X(t) is satisfied by the solution. The equations (2.6), (2.7) are a practical
means to calculate the effective action 1[X ] for simple low-dimensional
dynamical systems. Such results for the model (1.1) will be presented in the
longer work.(17)

However, naive application of the above prescription to large-scale,
spatially-extended systems with many degrees of freedom becomes com-
putationally intractable. A variational method based on (2.5), known as
the Rayleigh�Ritz approximation scheme, (21�24) addresses this difficulty. In
such a scheme, finitely-parameterized guesses P� (x, t; +) and A� (x, t; :, +) are
inserted into the action functional as trial states, and variation effected over
the 2p parameters :i , +i , i=1,..., p. It is convenient to take the left trial
function as a linear superposition of p moment-functions �i (x):

A� (x, t; :, +)=1+ :
p

i=1

:i (t)[�i (x)&+i (t)] (2.8)

where

| �i (x) P� (x, t; +) dx=+i (t), i=1,..., p (2.9)

464 Eyink and Restrepo



are the moment-averages in the guess P� (x, t; +) for the probability density.
These trial functions yield a reduced form of the action functional

1� [:, +] :=|
tf

ti

:�(t)[+* (t)&V(t))] dt (2.10)

where Vi (+) :=(L*�i )+ , with ( } )+ :=�( } ) P(x, t; +) dx. An unconstrained
variation over the parameters yields the moment-closure equations +* =V(+)
and an associated set of adjoint equations for :(t). The equations (2.8),
(2.9) automatically implement the normalization constraint. The expecta-
tion constraint becomes

!(+(t))+:�(t) C(+(t))=X(t) (2.11)

where !(+) :=(x) + and Ci (+) :=(x�i (x)) +&(x)+ (�i (x)) + , i=1,..., p.
This constraint may be implemented by the Lagrange multiplier h(t). The
reduced Euler�Lagrange equations are the forward equation solved with
initial data +(ti )=+0 :

+* =V(+)+h(t) C(+) :=VX (+, h(t)) (2.12)

and the backward equation solved with the final condition :(tf )=0:

:* +\�VX

�+ +
�

(+, h(t)) :+\�!
�++

�

(+) h(t)=0 (2.13)

Substituting the solutions :(t), +(t) into the reduced action (2.10) yields the
Rayleigh�Ritz approximation 1� [X ] to the effective action. In this way,
moment-closure methods that have traditionally been used in the calcula-
tion of ensemble averages may also be employed in the approximate
evaluation of optimal histories. The ability of the Rayleigh�Ritz scheme to
predict high Reynolds number turbulent decay has already been tested,
using standard K&= closure methods.(27) In our longer work (17) closure
ideas developed by Nicolis and collaborators for the chaotic Lorenz
model(28, 29) will be applied to the data assimilation problem in that model.

It is illuminating to compare our proposed estimation method, based
upon the Rayleigh�Ritz approximation of the effective action, with another
recently developed approximate estimation scheme, the Ensemble Kalman
Filter.(30�32) The two are closely related conceptually, since they both attempt
to calculate the statistics in ensembles conditioned upon observations.
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However, they differ in the approximations employed.2 There are two
major approximations in each method. In our method, the first approxima-
tion is upon the conditioning set R, which involves conditions upon the
N-sample average (2.1) rather than upon individual sample elements. For
further discussions of this point, see ref. 16. It is shown there that the mini-
mizer of the effective action gives the conditional statistics in a larger
ensemble than the correctly conditioned ensemble and is thus suboptimal
in a precise sense. In ref. 16 this property of the variational estimator
is called ``mean-optimality.'' However, it is definitely an approximation
whose effect, while hopefully small, is essentially uncontrolled. The second
approximation in our scheme is the Rayleigh�Ritz method itself, that is, the
use of moment-closure equations to evolve the statistics in time rather than
by means of the exact Kolmorogov or Liouville equations for the probabil-
ity distributions, as in (2.6), (2.7). The two approximations used in the
Ensemble Kalman Filter are quite different. First, as in the Kalman filter-
ing method generally, it is assumed that the estimate at measurement times
can be obtained by making a linear interpolation between the measured
and forecast values, the so-called ``analysis'' step. The appropriate weight-
ing is determined from a ``Kalman gain matrix,'' which is calculated from
model forecast and measurement error covariances. However, the optimal
nonlinear methods(19, 20) do not lead in general to such a linear interpola-
tion scheme which is, again, an approximation of unknown validity. The
second approximation in the ensemble method is the use of an actual
emsemble of N samples evolving under the nonlinear dynamics in order
to propagate statistics in time between measurements. In principle, this
approximation is systematic, converging as number of samples N is
increased toward infinity. However, Monte Carlo errors vanish only
proportionately to 1�- N and, thus, achieving even a 100 accuracy in
statistical evolution would require no less than N=100 samples. It will
generally not be practical in real applications to deal with ensembles of
more than a hundred or so samples. Thus, another essential approximation
is made here. It is hoped that, because our variational scheme and the
Ensemble Kalman Filter scheme attempt to calculate the same conditional
statistics, but with quite different approximations, that the two methods
will prove complementary. Each of them can be used to validate (or to call
into question) the results of the other.
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3. RESULTS OF A ONE-MOMENT CLOSURE

In this work we will just illustrate our method using a simple one-
moment closure for the bimodal Langevin model (1.1). It is natural to take
as the moment function �1(x)=x, the state variable itself. As a guess for
the statistics we will take the model PDF

P(x; +)=\1&+
2 + 1

- 2?_2
exp _&

(x+1)2

2_2 &
+\1++

2 + 1

- 2?_2
exp _&

(x&1)2

2_2 & , |+|<1 (3.1)

and

P(x; +)=
1

- ?_2
exp _&

(x&+)2

2_2 & , |+|>1 (3.2)

It is easy to check that � xP(x; +) dx=+. The value _2=}2�16 is chosen so
that, when +=0, the guess reduces to the steepest descent approximation
of the stationary distribution Ps(x), as considered in ref. 6. This consists of
a sum of two Gaussian distributions centered at \1 with standard devia-
tions _. It gives a reasonable representation of the exact stationary distribu-
tion, but it is more convenient for calculation. As + moves away from 0
toward one of the minima \1, the corresponding peak grows while the
opposite one diminishes. When +=\1, only the one peak remains and the
opposite has completely disappeared. Then as + moves beyond the mini-
mum to |+|>1, the single Gaussian peak is simply shifted to the new
center + with the same height and variance. This gives a reasonable model of
the steady-state statistical distribution of X(t) at large times t conditioned
upon the event X� N(t)=+.

It is easy to derive from this statistical model the moment-closure
equation

+* =&12_2+&4+ max[+2&1, 0] :=V(+) (3.3)

It is important to observe that the origin 0, which is unstable for the deter-
ministic dynamics X4 (t)= f (X(t)), is now the global stable fixed point of the
closure dynamics (3.3). This corresponds to the stability of the Fokker�
Planck equation (2.4), which, in the absence of any additional information
from observations, implies a relaxation of the time-dependent distribution
P(x, t) to the double-peaked stationary distribution Ps(x). In the steady-
state there is complete loss of information as to which regime, + or &, the
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system is in and the mean is +=0. This statistical stability inherent to
chaotic or stochastic nonlinear dynamics is an important ingredient of the
present method. The other elements of the closure in addition to V(+)
required for the calculation of the effective action are !(+)=+, and the
covariance

C(+)=_2+max[1&+2, 0]. (3.4)

These are substituted into (2.12), (2.13) to yield the forward and backward
equations that are numerically integrated to obtain the approximate effec-
tive action 1� [x] and its gradient h� [t; X ]=($1� �$X(t))[X ]. It is con-
venient to note that, by Legendre duality, the latter coincides with the con-
trol field or Lagrange multiplier h(t) that appears in (2.12), (2.13). Hence
it is easy to carry out a conjugate-gradient or variable-metric minimization
of the full cost function

1�
*

[X ]=1� [X ]+
1

2R
:
M

m=1

[X(tm)&rm]2 (3.5)

The latter is the joint effective action 1� [X, r] of the state-history X(t) and
the measurements rm , m=1,..., M, if the latter are assumed to have
Gaussian errors with common variances R. We have carried out this mini-
mization for the model problem with }=0.5, obtaining an optimal history
X

*
(t). We were particularly interested to test the ability of this estimator

to track climate transitions observed in an empirical dataset. Here we shall
illustrate this with an artifical dataset of M=10 observations taken at unit
times tm=m, m=1,..., 10. This is the same spacing of measurements as in
ref. 11. As a simple example with a transition we take rm=&1 for
m=1,..., 5 and rm=+1 for m=6,..., 10. We consider the four choices of
observation error variance R=0.04, 0.16, 0.36 and 0.64. In addition to the
optimal history X

*
(t), we also calculate the ensemble variance Var

*
(t)=

( (X(t)&X
*

(t))2)
*

by a finite-difference approximation to the Hessian of
the effective action. This gives the intrinsic dispersion that would be observed
in an N-sample ensemble experiment and it provides a reasonable measure
of the confidence level in the predicted optimal history. It is a consequence
of the large fluctuations naturally occurring in this system that the variance
Var

*
(t) need not be small. The details of our calculations and numerical

methods, along with a treatment of a more realistic dataset and a more
complete discussion of the results, can be found in ref. 17.

For the above artifical dataset the results are shown in Fig. 1(a)�(d),
which plot both the optimal history X

*
(t) and the ensemble deviation

_
*

(t) :=- Var
*

(t) at each of the values R=0.04�0.64. It may be seen that,

468 Eyink and Restrepo



File: 822J 702111 . By:XX . Date:25:10:00 . Time:00:02 LOP8M. V8.B. Page 01:01
Codes: 1677 Signs: 1258 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Optimal histories and standard deviations. Graphed are the mean X
*

(t) and
standard deviation _

*
(t) in the ensembles conditioned on the imperfect observations, as

approximated by the one-moment closure. Gaussian observation errors were assumed with
variances (a) R=0.04, (b) R=0.16, (c) R=0.36, and (d) R=0.64.

already for the value R=0.04 at which the EKF and LSV assimilation
methods fail to track the transition, the optimal estimator from the effective
action clearly follows the climate change indicated in the data. More
impressively, the transition persists with very little qualitative change in the
estimate X

*
(t) as R is increased up to the highest value R=0.64. The

transition continues to be followed, but with a quantitative reduction in
amplitude. This robustness of the estimator to different confidence levels
assumed for the reliability of measurements is, obviously, a very attractive
feature. It may furthermore be observed that the ensemble standard devia-
tions obtained from the effective action are closely correlated during the
measurement interval (1, 10) to the size r- R of the observation errors,
except at the time of the transition itself near t=5.5. At that time _

*
(t)
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grows to near 1, reflecting 1000 uncertainty in the precise state of the
system as it goes through the transition. Before and after the measurement
interval the ensemble variance _

*
(t) also grows, reflecting the intrinsic loss

of predictability of the system as time goes forward (and backward) from
the measurements.

The scrupulous honesty of the method in admitting the inherent
impossibility of predicting with precision in such circumstances is, in fact,
the primary reason it succeeds to track the transition. On the contrary, the
EKF and LSV methods follow the deterministic dynamics X4 (t)= f (X(t))
between measurements into the wells at stable fixed points X=\1. There
they show a single-peaked Gaussian distribution of X with variance
_2=1�64. Unless the measurement error variance R is smaller than this
value, the standard EKF and LSV methods will fail to track the transition
to the other well even when it is observed in the data. In the effective action
method the statistics evolve naturally in the absence of data to give
estimate X

*
=0, with a corresponding growth of the error variance to

_2

*
r1 or 1000. The estimator is then quite ready to accept information

from measurements, even those with rather large errors.
We have thus demonstrated that, in this simple example, the proposed

variational method succeeds where EKF and LSV fail. Of course, some
modifications of the latter methods have been shown in ref. 11 to succeed
as well (for the harder 3-mode Lorenz model rather than the double-well
system). Thus, it is worth comparing our approach briefly with those alter-
natives. In ref. 11 a ``higher-order EKF'' method was tested, in which the
forecast error covariance equation was evolved within a moment-trunca-
tion closure including moments up to 4th-order. While this worked well for
the 3-variable system, the authors noted themselves that it would be
impractical for more realistic geophysical models. In such more realistic
applications, even 2nd-order closure schemes are not very practical. It is
therefore very important that the method developed by us here can succeed
using only a first-order moment-closure. Another modification considered
in ref. 11 was a ``stochastic approximation,'' in which the model noise term
was replaced by an empirical noise model representing effects of the non-
linear chaotic dynamics. In realistic applications, such a term would arise
as an ``eddy noise'' induced, for example, by subgrid-scale turbulence. As
discussed in ref. 22, the method that we have employed here based upon
the effective action takes into account such chaos-induced stochasticity. In
fact, the Rayleigh�Ritz effective action��for small departures from the
absolute minimum��reduces just to an Onsager�Machlup functional for
the linearized closure dynamics (not the microscopic dynamics) and with
model noise replaced by an effective, nonlinearly-generated noise. A main
difference from the ``stochastic approximation'' considered by ref. 11 is that
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the effective noise is calculated within the Rayleigh�Ritz approximation
from the dynamics and not modelled empirically.
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